{ "cells": [ { "cell_type": "markdown", "id": "a641832b", "metadata": {}, "source": [ "(emcee_conversion)=\n", "# Converting emcee objects to InferenceData\n", "\n", "{class}`~arviz.InferenceData` is the central data format for ArviZ. `InferenceData` itself is just a container that maintains references to one or more {class}`xarray.Dataset`. \n", "\n", "Below are various ways to generate an `InferenceData` from emcee objects." ] }, { "cell_type": "markdown", "id": "279a434d", "metadata": {}, "source": [ "```{seealso}\n", "\n", "- Conversion from Python, numpy or pandas objects\n", "- {ref}`xarray_for_arviz` for an overview of `InferenceData` and its role within ArviZ. \n", "- {ref}`schema` describes the structure of `InferenceData` objects and the assumptions made by ArviZ to ease your exploratory analysis of Bayesian models.\n", "```" ] }, { "cell_type": "markdown", "id": "b702e7fd", "metadata": {}, "source": [ "We will start by importing the required packages and defining the model. The famous 8 school model." ] }, { "cell_type": "code", "execution_count": 1, "id": "87f7958f", "metadata": {}, "outputs": [], "source": [ "import arviz as az\n", "import numpy as np\n", "import emcee" ] }, { "cell_type": "code", "execution_count": 2, "id": "9bdd7bbc", "metadata": {}, "outputs": [], "source": [ "az.style.use(\"arviz-darkgrid\")" ] }, { "cell_type": "code", "execution_count": 3, "id": "7e9a05da", "metadata": {}, "outputs": [], "source": [ "J = 8\n", "y_obs = np.array([28.0, 8.0, -3.0, 7.0, -1.0, 1.0, 18.0, 12.0])\n", "sigma = np.array([15.0, 10.0, 16.0, 11.0, 9.0, 11.0, 10.0, 18.0])" ] }, { "cell_type": "code", "execution_count": 4, "id": "1cd28960", "metadata": {}, "outputs": [], "source": [ "def log_prior_8school(theta):\n", " mu, tau, eta = theta[0], theta[1], theta[2:]\n", " # Half-cauchy prior, hwhm=25\n", " if tau < 0:\n", " return -np.inf\n", " prior_tau = -np.log(tau**2 + 25**2)\n", " prior_mu = -((mu / 10) ** 2) # normal prior, loc=0, scale=10\n", " prior_eta = -np.sum(eta**2) # normal prior, loc=0, scale=1\n", " return prior_mu + prior_tau + prior_eta\n", "\n", "\n", "def log_likelihood_8school(theta, y, s):\n", " mu, tau, eta = theta[0], theta[1], theta[2:]\n", " return -(((mu + tau * eta - y) / s) ** 2)\n", "\n", "\n", "def lnprob_8school(theta, y, s):\n", " prior = log_prior_8school(theta)\n", " like_vect = log_likelihood_8school(theta, y, s)\n", " like = np.sum(like_vect)\n", " return like + prior" ] }, { "cell_type": "code", "execution_count": 5, "id": "cac78e4f", "metadata": {}, "outputs": [], "source": [ "nwalkers = 40 # called chains in ArviZ\n", "ndim = J + 2\n", "draws = 1500\n", "pos = np.random.normal(size=(nwalkers, ndim))\n", "pos[:, 1] = np.absolute(pos[:, 1])\n", "sampler = emcee.EnsembleSampler(nwalkers, ndim, lnprob_8school, args=(y_obs, sigma))\n", "sampler.run_mcmc(pos, draws);" ] }, { "cell_type": "markdown", "id": "cf6af8a4", "metadata": {}, "source": [ "## Manually set variable names\n", "This first example will show how to convert manually setting the variable names only, leaving everything else to ArviZ defaults." ] }, { "cell_type": "code", "execution_count": 6, "id": "95f696a0", "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "
<xarray.Dataset>\n", "Dimensions: (chain: 40, draw: 1500)\n", "Coordinates:\n", " * chain (chain) int64 0 1 2 3 4 5 6 7 8 9 ... 30 31 32 33 34 35 36 37 38 39\n", " * draw (draw) int64 0 1 2 3 4 5 6 7 ... 1493 1494 1495 1496 1497 1498 1499\n", "Data variables:\n", " mu (chain, draw) float64 0.6982 0.7962 0.8433 ... 5.763 5.763 5.029\n", " tau (chain, draw) float64 0.6679 0.7259 0.8075 ... 2.051 2.051 3.239\n", " eta0 (chain, draw) float64 0.08153 0.008519 0.007711 ... 0.4684 0.6057\n", " eta1 (chain, draw) float64 -0.5837 -0.6358 -0.828 ... 1.431 1.431 1.608\n", " eta2 (chain, draw) float64 0.104 -0.003427 0.08645 ... -1.056 -0.8344\n", " eta3 (chain, draw) float64 0.8693 1.196 1.423 ... -1.621 -1.621 -0.8859\n", " eta4 (chain, draw) float64 0.8211 1.27 1.324 ... -1.509 -1.509 -0.9923\n", " eta5 (chain, draw) float64 0.04491 0.2302 0.1735 ... -0.8137 -0.5359\n", " eta6 (chain, draw) float64 0.2983 0.1357 0.1385 ... -0.2085 0.0377\n", " eta7 (chain, draw) float64 -0.5895 -0.5165 -0.6091 ... 0.1594 -0.03057\n", "Attributes:\n", " created_at: 2021-08-30T18:14:53.861857\n", " arviz_version: 0.11.2\n", " inference_library: emcee\n", " inference_library_version: 3.1.1
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\n", " 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,\n", " 36, 37, 38, 39])
array([ 0, 1, 2, ..., 1497, 1498, 1499])
array([[ 0.69824844, 0.79617544, 0.84330726, ..., 5.36725902,\n", " 5.36725902, 5.36725902],\n", " [ 0.11248859, 0.11248859, 0.06015108, ..., 6.26414247,\n", " 7.48213444, 7.62666694],\n", " [-0.93632231, -0.93632231, -0.88874485, ..., 2.07279112,\n", " 2.07279112, 2.07279112],\n", " ...,\n", " [-1.39513971, -0.6841303 , -0.22676674, ..., 8.03948904,\n", " 8.03948904, 8.03948904],\n", " [-0.64258473, -0.63895969, -0.27810694, ..., 1.28046414,\n", " -0.03145993, -0.03145993],\n", " [-1.51237728, -1.51237728, -1.51237728, ..., 5.76290275,\n", " 5.76290275, 5.02928256]])
array([[ 0.66788403, 0.7259102 , 0.80752206, ..., 0.03694788,\n", " 0.03694788, 0.03694788],\n", " [ 0.3207948 , 0.3207948 , 0.41749554, ..., 9.79903119,\n", " 8.14156878, 7.60103129],\n", " [ 1.04038851, 1.04038851, 1.06008197, ..., 17.27429606,\n", " 17.27429606, 17.27429606],\n", " ...,\n", " [ 1.33245704, 1.06653867, 1.02533509, ..., 0.22325512,\n", " 0.22325512, 0.22325512],\n", " [ 0.53704382, 0.49084296, 0.82428818, ..., 0.97799322,\n", " 0.71121769, 0.71121769],\n", " [ 1.03024648, 1.03024648, 1.03024648, ..., 2.05085976,\n", " 2.05085976, 3.23924793]])
array([[ 0.08152575, 0.00851919, 0.00771088, ..., 0.01908609,\n", " 0.01908609, 0.01908609],\n", " [ 0.51822161, 0.51822161, 0.52702754, ..., 0.77482336,\n", " 1.00139478, 1.01300919],\n", " [ 1.96407299, 1.96407299, 1.82762146, ..., 0.81201598,\n", " 0.81201598, 0.81201598],\n", " ...,\n", " [ 0.54905919, -0.30758132, -0.15850033, ..., 0.71909529,\n", " 0.71909529, 0.71909529],\n", " [-1.49816062, -1.60204414, -1.26912917, ..., -0.63261196,\n", " -0.78396615, -0.78396615],\n", " [-0.40230539, -0.40230539, -0.40230539, ..., 0.46842652,\n", " 0.46842652, 0.60565958]])
array([[-0.58367651, -0.63579839, -0.82795929, ..., -0.33392221,\n", " -0.33392221, -0.33392221],\n", " [-0.27190443, -0.27190443, -0.82228464, ..., 0.36996327,\n", " 0.63805827, 0.42878518],\n", " [ 0.7449581 , 0.7449581 , 0.72617796, ..., 0.41748271,\n", " 0.41748271, 0.41748271],\n", " ...,\n", " [ 1.02197852, 0.96290899, 0.60247571, ..., 1.04108037,\n", " 1.04108037, 1.04108037],\n", " [ 0.34551004, 0.29163914, -0.10763165, ..., -0.32320034,\n", " -0.38804561, -0.38804561],\n", " [-0.34432128, -0.34432128, -0.34432128, ..., 1.43086564,\n", " 1.43086564, 1.60761732]])
array([[ 0.10398099, -0.00342714, 0.08644913, ..., 0.3755985 ,\n", " 0.3755985 , 0.3755985 ],\n", " [ 0.7464532 , 0.7464532 , 0.37312608, ..., -0.70063911,\n", " -0.71519927, -0.81143714],\n", " [-0.32280405, -0.32280405, -0.31178929, ..., -0.51019 ,\n", " -0.51019 , -0.51019 ],\n", " ...,\n", " [-0.45466237, -0.05838037, 0.03900794, ..., -0.21620162,\n", " -0.21620162, -0.21620162],\n", " [-2.04671119, -2.2202022 , -1.19514007, ..., 1.33819298,\n", " 1.50462748, 1.50462748],\n", " [-0.9050526 , -0.9050526 , -0.9050526 , ..., -1.05638496,\n", " -1.05638496, -0.83442841]])
array([[ 0.8693095 , 1.19621798, 1.42303564, ..., -0.79560144,\n", " -0.79560144, -0.79560144],\n", " [-1.08612533, -1.08612533, -0.54359142, ..., 0.90278086,\n", " 1.15766589, 0.7120672 ],\n", " [ 1.39504785, 1.39504785, 1.31201871, ..., 0.22067313,\n", " 0.22067313, 0.22067313],\n", " ...,\n", " [-1.87925062, -0.21780186, -0.11415233, ..., 0.83981125,\n", " 0.83981125, 0.83981125],\n", " [ 1.20783543, 1.33222884, 1.14406311, ..., -0.01284912,\n", " -0.08905337, -0.08905337],\n", " [ 0.37776041, 0.37776041, 0.37776041, ..., -1.62086036,\n", " -1.62086036, -0.88594592]])
array([[ 0.82105387, 1.26961709, 1.32416423, ..., -0.2459569 ,\n", " -0.2459569 , -0.2459569 ],\n", " [-1.86207063, -1.86207063, -1.49599093, ..., 0.06620745,\n", " 0.14848399, -0.07355801],\n", " [ 1.28605108, 1.28605108, 1.25958692, ..., -0.60792979,\n", " -0.60792979, -0.60792979],\n", " ...,\n", " [-1.18420667, -0.71923738, -0.27185226, ..., 0.13602594,\n", " 0.13602594, 0.13602594],\n", " [ 0.0369629 , 0.10294485, 0.43936142, ..., -0.62330586,\n", " -0.63818442, -0.63818442],\n", " [-0.12814047, -0.12814047, -0.12814047, ..., -1.50864077,\n", " -1.50864077, -0.99230636]])
array([[ 0.04490954, 0.2302036 , 0.17352078, ..., 0.30174842,\n", " 0.30174842, 0.30174842],\n", " [-1.06344488, -1.06344488, -1.06039012, ..., -0.78676276,\n", " -1.00580536, -0.8994664 ],\n", " [-0.13577697, -0.13577697, -0.14314371, ..., 0.17122446,\n", " 0.17122446, 0.17122446],\n", " ...,\n", " [ 1.72646293, 0.49537014, 0.32919773, ..., -0.38252575,\n", " -0.38252575, -0.38252575],\n", " [-0.42622842, -0.50664213, 0.04164551, ..., -0.22083327,\n", " -0.23227815, -0.23227815],\n", " [ 0.00442761, 0.00442761, 0.00442761, ..., -0.81374118,\n", " -0.81374118, -0.53590256]])
array([[ 0.29826293, 0.13570644, 0.1384578 , ..., 0.76155516,\n", " 0.76155516, 0.76155516],\n", " [ 1.27061036, 1.27061036, 0.71765789, ..., 0.42466312,\n", " 0.15725957, 0.05649381],\n", " [-0.45382172, -0.45382172, -0.40167441, ..., 0.42766215,\n", " 0.42766215, 0.42766215],\n", " ...,\n", " [ 0.24977824, -0.1289273 , 0.09393249, ..., -0.21744701,\n", " -0.21744701, -0.21744701],\n", " [ 0.19870891, 0.22729667, 0.85836095, ..., -0.15337504,\n", " -0.04459114, -0.04459114],\n", " [-0.1805794 , -0.1805794 , -0.1805794 , ..., -0.20851802,\n", " -0.20851802, 0.0377028 ]])
array([[-0.58949077, -0.51653613, -0.60913273, ..., -0.28262954,\n", " -0.28262954, -0.28262954],\n", " [-1.02587602, -1.02587602, -1.18220311, ..., -0.70635198,\n", " -1.26786956, -0.87499378],\n", " [ 0.43803847, 0.43803847, 0.39577369, ..., -0.87502477,\n", " -0.87502477, -0.87502477],\n", " ...,\n", " [ 0.01571683, 0.7008197 , 0.67271331, ..., 0.51383304,\n", " 0.51383304, 0.51383304],\n", " [-1.20391145, -1.37010801, -1.05653758, ..., -0.8976637 ,\n", " -0.91648287, -0.91648287],\n", " [ 1.80343844, 1.80343844, 1.80343844, ..., 0.15942518,\n", " 0.15942518, -0.03056562]])
<xarray.Dataset>\n", "Dimensions: (chain: 40, draw: 1500)\n", "Coordinates:\n", " * chain (chain) int64 0 1 2 3 4 5 6 7 8 9 ... 30 31 32 33 34 35 36 37 38 39\n", " * draw (draw) int64 0 1 2 3 4 5 6 7 ... 1493 1494 1495 1496 1497 1498 1499\n", "Data variables:\n", " lp (chain, draw) float64 -16.3 -17.83 -18.92 ... -20.11 -20.11 -16.68\n", "Attributes:\n", " created_at: 2021-08-30T18:14:53.851570\n", " arviz_version: 0.11.2\n", " inference_library: emcee\n", " inference_library_version: 3.1.1
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\n", " 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,\n", " 36, 37, 38, 39])
array([ 0, 1, 2, ..., 1497, 1498, 1499])
array([[-16.29703737, -17.82792262, -18.92214387, ..., -13.44930902,\n", " -13.44930902, -13.44930902],\n", " [-23.84232789, -23.84232789, -21.27484126, ..., -13.70035183,\n", " -17.53674728, -14.41060779],\n", " [-23.52855761, -23.52855761, -22.5780883 , ..., -13.55239988,\n", " -13.55239988, -13.55239988],\n", " ...,\n", " [-25.50638851, -17.64822888, -15.83134714, ..., -14.60346133,\n", " -14.60346133, -14.60346133],\n", " [-25.11716475, -26.98472303, -21.36045048, ..., -17.52355592,\n", " -19.35557577, -19.35557577],\n", " [-20.86324354, -20.86324354, -20.86324354, ..., -20.1093519 ,\n", " -20.1093519 , -16.6765458 ]])
<xarray.Dataset>\n", "Dimensions: (arg_0_dim_0: 8, arg_1_dim_0: 8)\n", "Coordinates:\n", " * arg_0_dim_0 (arg_0_dim_0) int64 0 1 2 3 4 5 6 7\n", " * arg_1_dim_0 (arg_1_dim_0) int64 0 1 2 3 4 5 6 7\n", "Data variables:\n", " arg_0 (arg_0_dim_0) float64 28.0 8.0 -3.0 7.0 -1.0 1.0 18.0 12.0\n", " arg_1 (arg_1_dim_0) float64 15.0 10.0 16.0 11.0 9.0 11.0 10.0 18.0\n", "Attributes:\n", " created_at: 2021-08-30T18:14:53.853598\n", " arviz_version: 0.11.2\n", " inference_library: emcee\n", " inference_library_version: 3.1.1
array([0, 1, 2, 3, 4, 5, 6, 7])
array([0, 1, 2, 3, 4, 5, 6, 7])
array([28., 8., -3., 7., -1., 1., 18., 12.])
array([15., 10., 16., 11., 9., 11., 10., 18.])
<xarray.Dataset>\n", "Dimensions: (chain: 40, draw: 1400)\n", "Coordinates:\n", " * chain (chain) int64 0 1 2 3 4 5 6 7 8 9 ... 30 31 32 33 34 35 36 37 38 39\n", " * draw (draw) int64 100 101 102 103 104 105 ... 1495 1496 1497 1498 1499\n", "Data variables:\n", " mu (chain, draw) float64 6.588 6.588 6.588 7.358 ... 5.763 5.763 5.029\n", " tau (chain, draw) float64 1.122 1.122 1.122 1.328 ... 2.051 2.051 3.239\n", " eta0 (chain, draw) float64 -0.4995 -0.4995 -0.4995 ... 0.4684 0.6057\n", " eta1 (chain, draw) float64 0.2038 0.2038 0.2038 ... 1.431 1.431 1.608\n", " eta2 (chain, draw) float64 0.1563 0.1563 0.1563 ... -1.056 -0.8344\n", " eta3 (chain, draw) float64 0.04793 0.04793 0.04793 ... -1.621 -0.8859\n", " eta4 (chain, draw) float64 -1.467 -1.467 -1.467 ... -1.509 -0.9923\n", " eta5 (chain, draw) float64 0.4489 0.4489 0.4489 ... -0.8137 -0.5359\n", " eta6 (chain, draw) float64 0.1747 0.1747 0.1747 ... -0.2085 0.0377\n", " eta7 (chain, draw) float64 0.4413 0.4413 0.4413 ... 0.1594 -0.03057\n", "Attributes:\n", " created_at: 2021-08-30T18:14:53.861857\n", " arviz_version: 0.11.2\n", " inference_library: emcee\n", " inference_library_version: 3.1.1
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\n", " 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,\n", " 36, 37, 38, 39])
array([ 100, 101, 102, ..., 1497, 1498, 1499])
array([[ 6.5878517 , 6.5878517 , 6.5878517 , ..., 5.36725902,\n", " 5.36725902, 5.36725902],\n", " [ 8.78769258, 7.82575182, 7.82575182, ..., 6.26414247,\n", " 7.48213444, 7.62666694],\n", " [ 5.52583051, 5.52583051, 5.12719649, ..., 2.07279112,\n", " 2.07279112, 2.07279112],\n", " ...,\n", " [ 4.61482935, 4.47024796, 4.81591608, ..., 8.03948904,\n", " 8.03948904, 8.03948904],\n", " [ 0.92422831, 0.92422831, 0.92422831, ..., 1.28046414,\n", " -0.03145993, -0.03145993],\n", " [-0.53976633, -0.53976633, -0.65763254, ..., 5.76290275,\n", " 5.76290275, 5.02928256]])
array([[ 1.1223702 , 1.1223702 , 1.1223702 , ..., 0.03694788,\n", " 0.03694788, 0.03694788],\n", " [ 1.74417772, 1.62659584, 1.62659584, ..., 9.79903119,\n", " 8.14156878, 7.60103129],\n", " [ 2.08514909, 2.08514909, 2.22684325, ..., 17.27429606,\n", " 17.27429606, 17.27429606],\n", " ...,\n", " [ 3.61158678, 4.11582 , 4.32372071, ..., 0.22325512,\n", " 0.22325512, 0.22325512],\n", " [ 0.0385638 , 0.0385638 , 0.0385638 , ..., 0.97799322,\n", " 0.71121769, 0.71121769],\n", " [ 1.81281716, 1.81281716, 1.81384961, ..., 2.05085976,\n", " 2.05085976, 3.23924793]])
array([[-0.49953247, -0.49953247, -0.49953247, ..., 0.01908609,\n", " 0.01908609, 0.01908609],\n", " [ 0.51180636, 0.52862043, 0.52862043, ..., 0.77482336,\n", " 1.00139478, 1.01300919],\n", " [ 1.08447267, 1.08447267, 1.39778419, ..., 0.81201598,\n", " 0.81201598, 0.81201598],\n", " ...,\n", " [ 0.42927276, 0.52216828, 0.38516008, ..., 0.71909529,\n", " 0.71909529, 0.71909529],\n", " [-1.07085722, -1.07085722, -1.07085722, ..., -0.63261196,\n", " -0.78396615, -0.78396615],\n", " [ 0.43718476, 0.43718476, 0.43870856, ..., 0.46842652,\n", " 0.46842652, 0.60565958]])
array([[ 0.20375509, 0.20375509, 0.20375509, ..., -0.33392221,\n", " -0.33392221, -0.33392221],\n", " [-0.47897209, -0.39267028, -0.39267028, ..., 0.36996327,\n", " 0.63805827, 0.42878518],\n", " [-1.13749575, -1.13749575, -1.43436789, ..., 0.41748271,\n", " 0.41748271, 0.41748271],\n", " ...,\n", " [ 0.72401666, 0.94771601, 0.95452915, ..., 1.04108037,\n", " 1.04108037, 1.04108037],\n", " [-0.21646498, -0.21646498, -0.21646498, ..., -0.32320034,\n", " -0.38804561, -0.38804561],\n", " [ 0.05308387, 0.05308387, 0.06135379, ..., 1.43086564,\n", " 1.43086564, 1.60761732]])
array([[ 0.15629831, 0.15629831, 0.15629831, ..., 0.3755985 ,\n", " 0.3755985 , 0.3755985 ],\n", " [ 0.07646884, 0.22982474, 0.22982474, ..., -0.70063911,\n", " -0.71519927, -0.81143714],\n", " [ 0.95026631, 0.95026631, 1.5276213 , ..., -0.51019 ,\n", " -0.51019 , -0.51019 ],\n", " ...,\n", " [-0.12921561, -0.14536789, -0.20631732, ..., -0.21620162,\n", " -0.21620162, -0.21620162],\n", " [-0.18553106, -0.18553106, -0.18553106, ..., 1.33819298,\n", " 1.50462748, 1.50462748],\n", " [ 0.36181655, 0.36181655, 0.3747941 , ..., -1.05638496,\n", " -1.05638496, -0.83442841]])
array([[ 0.0479263 , 0.0479263 , 0.0479263 , ..., -0.79560144,\n", " -0.79560144, -0.79560144],\n", " [-0.11674534, 0.009035 , 0.009035 , ..., 0.90278086,\n", " 1.15766589, 0.7120672 ],\n", " [-0.21965611, -0.21965611, -0.42872324, ..., 0.22067313,\n", " 0.22067313, 0.22067313],\n", " ...,\n", " [-0.16579112, -0.13190644, -0.09796613, ..., 0.83981125,\n", " 0.83981125, 0.83981125],\n", " [-1.02524753, -1.02524753, -1.02524753, ..., -0.01284912,\n", " -0.08905337, -0.08905337],\n", " [-0.23527656, -0.23527656, -0.24382442, ..., -1.62086036,\n", " -1.62086036, -0.88594592]])
array([[-1.46657444, -1.46657444, -1.46657444, ..., -0.2459569 ,\n", " -0.2459569 , -0.2459569 ],\n", " [ 0.03246754, -0.0400725 , -0.0400725 , ..., 0.06620745,\n", " 0.14848399, -0.07355801],\n", " [-0.2602346 , -0.2602346 , 0.36360168, ..., -0.60792979,\n", " -0.60792979, -0.60792979],\n", " ...,\n", " [-0.42345642, -0.38157343, -0.52230329, ..., 0.13602594,\n", " 0.13602594, 0.13602594],\n", " [ 0.45520304, 0.45520304, 0.45520304, ..., -0.62330586,\n", " -0.63818442, -0.63818442],\n", " [-0.1738624 , -0.1738624 , -0.14768729, ..., -1.50864077,\n", " -1.50864077, -0.99230636]])
array([[ 0.44890576, 0.44890576, 0.44890576, ..., 0.30174842,\n", " 0.30174842, 0.30174842],\n", " [ 1.07737541, 0.92208136, 0.92208136, ..., -0.78676276,\n", " -1.00580536, -0.8994664 ],\n", " [ 0.11609463, 0.11609463, 0.33724537, ..., 0.17122446,\n", " 0.17122446, 0.17122446],\n", " ...,\n", " [ 0.64240369, 0.79305623, 0.90431255, ..., -0.38252575,\n", " -0.38252575, -0.38252575],\n", " [-0.41489435, -0.41489435, -0.41489435, ..., -0.22083327,\n", " -0.23227815, -0.23227815],\n", " [ 0.85061344, 0.85061344, 0.87173743, ..., -0.81374118,\n", " -0.81374118, -0.53590256]])
array([[ 0.17474467, 0.17474467, 0.17474467, ..., 0.76155516,\n", " 0.76155516, 0.76155516],\n", " [ 0.0429738 , 0.17987497, 0.17987497, ..., 0.42466312,\n", " 0.15725957, 0.05649381],\n", " [ 0.73140249, 0.73140249, 1.19271605, ..., 0.42766215,\n", " 0.42766215, 0.42766215],\n", " ...,\n", " [-0.99158183, -0.98537934, -1.20985459, ..., -0.21744701,\n", " -0.21744701, -0.21744701],\n", " [ 0.49162222, 0.49162222, 0.49162222, ..., -0.15337504,\n", " -0.04459114, -0.04459114],\n", " [ 0.00923693, 0.00923693, 0.01536582, ..., -0.20851802,\n", " -0.20851802, 0.0377028 ]])
array([[ 0.44127792, 0.44127792, 0.44127792, ..., -0.28262954,\n", " -0.28262954, -0.28262954],\n", " [-0.6736082 , -0.45173637, -0.45173637, ..., -0.70635198,\n", " -1.26786956, -0.87499378],\n", " [ 0.55427798, 0.55427798, 0.49077358, ..., -0.87502477,\n", " -0.87502477, -0.87502477],\n", " ...,\n", " [ 0.8965947 , 1.06981953, 1.18074916, ..., 0.51383304,\n", " 0.51383304, 0.51383304],\n", " [ 0.9702864 , 0.9702864 , 0.9702864 , ..., -0.8976637 ,\n", " -0.91648287, -0.91648287],\n", " [-0.08460294, -0.08460294, -0.0978703 , ..., 0.15942518,\n", " 0.15942518, -0.03056562]])
<xarray.Dataset>\n", "Dimensions: (chain: 40, draw: 1400)\n", "Coordinates:\n", " * chain (chain) int64 0 1 2 3 4 5 6 7 8 9 ... 30 31 32 33 34 35 36 37 38 39\n", " * draw (draw) int64 100 101 102 103 104 105 ... 1495 1496 1497 1498 1499\n", "Data variables:\n", " lp (chain, draw) float64 -14.38 -14.38 -14.38 ... -20.11 -20.11 -16.68\n", "Attributes:\n", " created_at: 2021-08-30T18:14:53.851570\n", " arviz_version: 0.11.2\n", " inference_library: emcee\n", " inference_library_version: 3.1.1
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\n", " 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,\n", " 36, 37, 38, 39])
array([ 100, 101, 102, ..., 1497, 1498, 1499])
array([[-14.37752718, -14.37752718, -14.37752718, ..., -13.44930902,\n", " -13.44930902, -13.44930902],\n", " [-14.27358555, -13.3607929 , -13.3607929 , ..., -13.70035183,\n", " -17.53674728, -14.41060779],\n", " [-15.5233782 , -15.5233782 , -19.77298595, ..., -13.55239988,\n", " -13.55239988, -13.55239988],\n", " ...,\n", " [-15.63000723, -16.74445363, -18.12375562, ..., -14.60346133,\n", " -14.60346133, -14.60346133],\n", " [-17.75897755, -17.75897755, -17.75897755, ..., -17.52355592,\n", " -19.35557577, -19.35557577],\n", " [-16.21284898, -16.21284898, -16.37273547, ..., -20.1093519 ,\n", " -20.1093519 , -16.6765458 ]])
<xarray.Dataset>\n", "Dimensions: (arg_0_dim_0: 8, arg_1_dim_0: 8)\n", "Coordinates:\n", " * arg_0_dim_0 (arg_0_dim_0) int64 0 1 2 3 4 5 6 7\n", " * arg_1_dim_0 (arg_1_dim_0) int64 0 1 2 3 4 5 6 7\n", "Data variables:\n", " arg_0 (arg_0_dim_0) float64 28.0 8.0 -3.0 7.0 -1.0 1.0 18.0 12.0\n", " arg_1 (arg_1_dim_0) float64 15.0 10.0 16.0 11.0 9.0 11.0 10.0 18.0\n", "Attributes:\n", " created_at: 2021-08-30T18:14:53.853598\n", " arviz_version: 0.11.2\n", " inference_library: emcee\n", " inference_library_version: 3.1.1
array([0, 1, 2, 3, 4, 5, 6, 7])
array([0, 1, 2, 3, 4, 5, 6, 7])
array([28., 8., -3., 7., -1., 1., 18., 12.])
array([15., 10., 16., 11., 9., 11., 10., 18.])
<xarray.Dataset>\n", "Dimensions: (chain: 40, draw: 1500, var_2_dim_0: 8)\n", "Coordinates:\n", " * chain (chain) int64 0 1 2 3 4 5 6 7 8 ... 31 32 33 34 35 36 37 38 39\n", " * draw (draw) int64 0 1 2 3 4 5 6 ... 1494 1495 1496 1497 1498 1499\n", " * var_2_dim_0 (var_2_dim_0) int64 0 1 2 3 4 5 6 7\n", "Data variables:\n", " var_0 (chain, draw) float64 0.6982 0.7962 0.8433 ... 5.763 5.029\n", " var_1 (chain, draw) float64 0.6679 0.7259 0.8075 ... 2.051 3.239\n", " var_2 (chain, draw, var_2_dim_0) float64 0.08153 -0.5837 ... -0.03057\n", "Attributes:\n", " created_at: 2021-08-30T18:14:54.508656\n", " arviz_version: 0.11.2\n", " inference_library: emcee\n", " inference_library_version: 3.1.1
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\n", " 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,\n", " 36, 37, 38, 39])
array([ 0, 1, 2, ..., 1497, 1498, 1499])
array([0, 1, 2, 3, 4, 5, 6, 7])
array([[ 0.69824844, 0.79617544, 0.84330726, ..., 5.36725902,\n", " 5.36725902, 5.36725902],\n", " [ 0.11248859, 0.11248859, 0.06015108, ..., 6.26414247,\n", " 7.48213444, 7.62666694],\n", " [-0.93632231, -0.93632231, -0.88874485, ..., 2.07279112,\n", " 2.07279112, 2.07279112],\n", " ...,\n", " [-1.39513971, -0.6841303 , -0.22676674, ..., 8.03948904,\n", " 8.03948904, 8.03948904],\n", " [-0.64258473, -0.63895969, -0.27810694, ..., 1.28046414,\n", " -0.03145993, -0.03145993],\n", " [-1.51237728, -1.51237728, -1.51237728, ..., 5.76290275,\n", " 5.76290275, 5.02928256]])
array([[ 0.66788403, 0.7259102 , 0.80752206, ..., 0.03694788,\n", " 0.03694788, 0.03694788],\n", " [ 0.3207948 , 0.3207948 , 0.41749554, ..., 9.79903119,\n", " 8.14156878, 7.60103129],\n", " [ 1.04038851, 1.04038851, 1.06008197, ..., 17.27429606,\n", " 17.27429606, 17.27429606],\n", " ...,\n", " [ 1.33245704, 1.06653867, 1.02533509, ..., 0.22325512,\n", " 0.22325512, 0.22325512],\n", " [ 0.53704382, 0.49084296, 0.82428818, ..., 0.97799322,\n", " 0.71121769, 0.71121769],\n", " [ 1.03024648, 1.03024648, 1.03024648, ..., 2.05085976,\n", " 2.05085976, 3.23924793]])
array([[[ 0.08152575, -0.58367651, 0.10398099, ..., 0.04490954,\n", " 0.29826293, -0.58949077],\n", " [ 0.00851919, -0.63579839, -0.00342714, ..., 0.2302036 ,\n", " 0.13570644, -0.51653613],\n", " [ 0.00771088, -0.82795929, 0.08644913, ..., 0.17352078,\n", " 0.1384578 , -0.60913273],\n", " ...,\n", " [ 0.01908609, -0.33392221, 0.3755985 , ..., 0.30174842,\n", " 0.76155516, -0.28262954],\n", " [ 0.01908609, -0.33392221, 0.3755985 , ..., 0.30174842,\n", " 0.76155516, -0.28262954],\n", " [ 0.01908609, -0.33392221, 0.3755985 , ..., 0.30174842,\n", " 0.76155516, -0.28262954]],\n", "\n", " [[ 0.51822161, -0.27190443, 0.7464532 , ..., -1.06344488,\n", " 1.27061036, -1.02587602],\n", " [ 0.51822161, -0.27190443, 0.7464532 , ..., -1.06344488,\n", " 1.27061036, -1.02587602],\n", " [ 0.52702754, -0.82228464, 0.37312608, ..., -1.06039012,\n", " 0.71765789, -1.18220311],\n", "...\n", " [-0.63261196, -0.32320034, 1.33819298, ..., -0.22083327,\n", " -0.15337504, -0.8976637 ],\n", " [-0.78396615, -0.38804561, 1.50462748, ..., -0.23227815,\n", " -0.04459114, -0.91648287],\n", " [-0.78396615, -0.38804561, 1.50462748, ..., -0.23227815,\n", " -0.04459114, -0.91648287]],\n", "\n", " [[-0.40230539, -0.34432128, -0.9050526 , ..., 0.00442761,\n", " -0.1805794 , 1.80343844],\n", " [-0.40230539, -0.34432128, -0.9050526 , ..., 0.00442761,\n", " -0.1805794 , 1.80343844],\n", " [-0.40230539, -0.34432128, -0.9050526 , ..., 0.00442761,\n", " -0.1805794 , 1.80343844],\n", " ...,\n", " [ 0.46842652, 1.43086564, -1.05638496, ..., -0.81374118,\n", " -0.20851802, 0.15942518],\n", " [ 0.46842652, 1.43086564, -1.05638496, ..., -0.81374118,\n", " -0.20851802, 0.15942518],\n", " [ 0.60565958, 1.60761732, -0.83442841, ..., -0.53590256,\n", " 0.0377028 , -0.03056562]]])
<xarray.Dataset>\n", "Dimensions: (chain: 40, draw: 1500)\n", "Coordinates:\n", " * chain (chain) int64 0 1 2 3 4 5 6 7 8 9 ... 30 31 32 33 34 35 36 37 38 39\n", " * draw (draw) int64 0 1 2 3 4 5 6 7 ... 1493 1494 1495 1496 1497 1498 1499\n", "Data variables:\n", " lp (chain, draw) float64 -16.3 -17.83 -18.92 ... -20.11 -20.11 -16.68\n", "Attributes:\n", " created_at: 2021-08-30T18:14:54.505081\n", " arviz_version: 0.11.2\n", " inference_library: emcee\n", " inference_library_version: 3.1.1
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\n", " 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,\n", " 36, 37, 38, 39])
array([ 0, 1, 2, ..., 1497, 1498, 1499])
array([[-16.29703737, -17.82792262, -18.92214387, ..., -13.44930902,\n", " -13.44930902, -13.44930902],\n", " [-23.84232789, -23.84232789, -21.27484126, ..., -13.70035183,\n", " -17.53674728, -14.41060779],\n", " [-23.52855761, -23.52855761, -22.5780883 , ..., -13.55239988,\n", " -13.55239988, -13.55239988],\n", " ...,\n", " [-25.50638851, -17.64822888, -15.83134714, ..., -14.60346133,\n", " -14.60346133, -14.60346133],\n", " [-25.11716475, -26.98472303, -21.36045048, ..., -17.52355592,\n", " -19.35557577, -19.35557577],\n", " [-20.86324354, -20.86324354, -20.86324354, ..., -20.1093519 ,\n", " -20.1093519 , -16.6765458 ]])
<xarray.Dataset>\n", "Dimensions: (arg_0_dim_0: 8, arg_1_dim_0: 8)\n", "Coordinates:\n", " * arg_0_dim_0 (arg_0_dim_0) int64 0 1 2 3 4 5 6 7\n", " * arg_1_dim_0 (arg_1_dim_0) int64 0 1 2 3 4 5 6 7\n", "Data variables:\n", " arg_0 (arg_0_dim_0) float64 28.0 8.0 -3.0 7.0 -1.0 1.0 18.0 12.0\n", " arg_1 (arg_1_dim_0) float64 15.0 10.0 16.0 11.0 9.0 11.0 10.0 18.0\n", "Attributes:\n", " created_at: 2021-08-30T18:14:54.506402\n", " arviz_version: 0.11.2\n", " inference_library: emcee\n", " inference_library_version: 3.1.1
array([0, 1, 2, 3, 4, 5, 6, 7])
array([0, 1, 2, 3, 4, 5, 6, 7])
array([28., 8., -3., 7., -1., 1., 18., 12.])
array([15., 10., 16., 11., 9., 11., 10., 18.])
<xarray.Dataset>\n", "Dimensions: (chain: 40, draw: 1500, school: 8)\n", "Coordinates:\n", " * chain (chain) int64 0 1 2 3 4 5 6 7 8 9 ... 30 31 32 33 34 35 36 37 38 39\n", " * draw (draw) int64 0 1 2 3 4 5 6 7 ... 1493 1494 1495 1496 1497 1498 1499\n", " * school (school) int64 0 1 2 3 4 5 6 7\n", "Data variables:\n", " mu (chain, draw) float64 0.6982 0.7962 0.8433 ... 5.763 5.763 5.029\n", " tau (chain, draw) float64 0.6679 0.7259 0.8075 ... 2.051 2.051 3.239\n", " eta (chain, draw, school) float64 0.08153 -0.5837 ... 0.0377 -0.03057\n", "Attributes:\n", " created_at: 2021-08-30T18:14:57.535401\n", " arviz_version: 0.11.2\n", " inference_library: emcee\n", " inference_library_version: 3.1.1
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\n", " 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,\n", " 36, 37, 38, 39])
array([ 0, 1, 2, ..., 1497, 1498, 1499])
array([0, 1, 2, 3, 4, 5, 6, 7])
array([[ 0.69824844, 0.79617544, 0.84330726, ..., 5.36725902,\n", " 5.36725902, 5.36725902],\n", " [ 0.11248859, 0.11248859, 0.06015108, ..., 6.26414247,\n", " 7.48213444, 7.62666694],\n", " [-0.93632231, -0.93632231, -0.88874485, ..., 2.07279112,\n", " 2.07279112, 2.07279112],\n", " ...,\n", " [-1.39513971, -0.6841303 , -0.22676674, ..., 8.03948904,\n", " 8.03948904, 8.03948904],\n", " [-0.64258473, -0.63895969, -0.27810694, ..., 1.28046414,\n", " -0.03145993, -0.03145993],\n", " [-1.51237728, -1.51237728, -1.51237728, ..., 5.76290275,\n", " 5.76290275, 5.02928256]])
array([[ 0.66788403, 0.7259102 , 0.80752206, ..., 0.03694788,\n", " 0.03694788, 0.03694788],\n", " [ 0.3207948 , 0.3207948 , 0.41749554, ..., 9.79903119,\n", " 8.14156878, 7.60103129],\n", " [ 1.04038851, 1.04038851, 1.06008197, ..., 17.27429606,\n", " 17.27429606, 17.27429606],\n", " ...,\n", " [ 1.33245704, 1.06653867, 1.02533509, ..., 0.22325512,\n", " 0.22325512, 0.22325512],\n", " [ 0.53704382, 0.49084296, 0.82428818, ..., 0.97799322,\n", " 0.71121769, 0.71121769],\n", " [ 1.03024648, 1.03024648, 1.03024648, ..., 2.05085976,\n", " 2.05085976, 3.23924793]])
array([[[ 0.08152575, -0.58367651, 0.10398099, ..., 0.04490954,\n", " 0.29826293, -0.58949077],\n", " [ 0.00851919, -0.63579839, -0.00342714, ..., 0.2302036 ,\n", " 0.13570644, -0.51653613],\n", " [ 0.00771088, -0.82795929, 0.08644913, ..., 0.17352078,\n", " 0.1384578 , -0.60913273],\n", " ...,\n", " [ 0.01908609, -0.33392221, 0.3755985 , ..., 0.30174842,\n", " 0.76155516, -0.28262954],\n", " [ 0.01908609, -0.33392221, 0.3755985 , ..., 0.30174842,\n", " 0.76155516, -0.28262954],\n", " [ 0.01908609, -0.33392221, 0.3755985 , ..., 0.30174842,\n", " 0.76155516, -0.28262954]],\n", "\n", " [[ 0.51822161, -0.27190443, 0.7464532 , ..., -1.06344488,\n", " 1.27061036, -1.02587602],\n", " [ 0.51822161, -0.27190443, 0.7464532 , ..., -1.06344488,\n", " 1.27061036, -1.02587602],\n", " [ 0.52702754, -0.82228464, 0.37312608, ..., -1.06039012,\n", " 0.71765789, -1.18220311],\n", "...\n", " [-0.63261196, -0.32320034, 1.33819298, ..., -0.22083327,\n", " -0.15337504, -0.8976637 ],\n", " [-0.78396615, -0.38804561, 1.50462748, ..., -0.23227815,\n", " -0.04459114, -0.91648287],\n", " [-0.78396615, -0.38804561, 1.50462748, ..., -0.23227815,\n", " -0.04459114, -0.91648287]],\n", "\n", " [[-0.40230539, -0.34432128, -0.9050526 , ..., 0.00442761,\n", " -0.1805794 , 1.80343844],\n", " [-0.40230539, -0.34432128, -0.9050526 , ..., 0.00442761,\n", " -0.1805794 , 1.80343844],\n", " [-0.40230539, -0.34432128, -0.9050526 , ..., 0.00442761,\n", " -0.1805794 , 1.80343844],\n", " ...,\n", " [ 0.46842652, 1.43086564, -1.05638496, ..., -0.81374118,\n", " -0.20851802, 0.15942518],\n", " [ 0.46842652, 1.43086564, -1.05638496, ..., -0.81374118,\n", " -0.20851802, 0.15942518],\n", " [ 0.60565958, 1.60761732, -0.83442841, ..., -0.53590256,\n", " 0.0377028 , -0.03056562]]])
<xarray.Dataset>\n", "Dimensions: (chain: 40, draw: 1500, school: 8)\n", "Coordinates:\n", " * chain (chain) int64 0 1 2 3 4 5 6 7 8 ... 32 33 34 35 36 37 38 39\n", " * draw (draw) int64 0 1 2 3 4 5 6 ... 1494 1495 1496 1497 1498 1499\n", " * school (school) int64 0 1 2 3 4 5 6 7\n", "Data variables:\n", " log_likelihood (chain, draw, school) float64 -3.3 -0.5916 ... -0.1543\n", "Attributes:\n", " created_at: 2021-08-30T18:14:57.531408\n", " arviz_version: 0.11.2\n", " inference_library: emcee\n", " inference_library_version: 3.1.1
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\n", " 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,\n", " 36, 37, 38, 39])
array([ 0, 1, 2, ..., 1497, 1498, 1499])
array([0, 1, 2, 3, 4, 5, 6, 7])
array([[[-3.29962425e+00, -5.91603994e-01, -5.54512921e-02, ...,\n", " -6.10346874e-04, -2.92497097e+00, -4.22172393e-01],\n", " [-3.28760730e+00, -5.87576994e-01, -5.62190075e-02, ...,\n", " -1.11418891e-05, -2.92591763e+00, -4.13790819e-01],\n", " [-3.27621247e+00, -6.12351344e-01, -5.98143882e-02, ...,\n", " -2.26937336e-06, -2.90528105e+00, -4.18794556e-01],\n", " ...,\n", " [-2.27648464e+00, -6.99644132e-02, -2.74388479e-01, ...,\n", " -1.58433525e-01, -1.58876020e+00, -1.36209530e-01],\n", " [-2.27648464e+00, -6.99644132e-02, -2.74388479e-01, ...,\n", " -1.58433525e-01, -1.58876020e+00, -1.36209530e-01],\n", " [-2.27648464e+00, -6.99644132e-02, -2.74388479e-01, ...,\n", " -1.58433525e-01, -1.58876020e+00, -1.36209530e-01]],\n", "\n", " [[-3.41541659e+00, -6.35964292e-01, -4.38888593e-02, ...,\n", " -1.24760573e-02, -3.05547121e+00, -4.60634226e-01],\n", " [-3.41541659e+00, -6.35964292e-01, -4.38888593e-02, ...,\n", " -1.24760573e-02, -3.05547121e+00, -4.60634226e-01],\n", " [-3.41505897e+00, -6.86105588e-01, -4.03992301e-02, ...,\n", " -1.57972233e-02, -3.11177713e+00, -4.77128919e-01],\n", "...\n", " [-3.32168269e+00, -4.94999995e-01, -1.22028296e-01, ...,\n", " -3.43723125e-05, -2.84581232e+00, -4.15125703e-01],\n", " [-3.63258963e+00, -6.90136396e-01, -6.37138926e-02, ...,\n", " -1.18346757e-02, -3.26278253e+00, -4.96498642e-01],\n", " [-3.63258963e+00, -6.90136396e-01, -6.37138926e-02, ...,\n", " -1.18346757e-02, -3.26278253e+00, -4.96498642e-01]],\n", "\n", " [[-3.98051738e+00, -9.73599203e-01, -1.20407032e-03, ...,\n", " -5.19763621e-02, -3.88027694e+00, -4.19212449e-01],\n", " [-3.98051738e+00, -9.73599203e-01, -1.20407032e-03, ...,\n", " -5.19763621e-02, -3.88027694e+00, -4.19212449e-01],\n", " [-3.98051738e+00, -9.73599203e-01, -1.20407032e-03, ...,\n", " -5.19763621e-02, -3.88027694e+00, -4.19212449e-01],\n", " ...,\n", " [-2.01193802e+00, -4.86377256e-03, -1.69970952e-01, ...,\n", " -7.91160711e-02, -1.60395600e+00, -1.07807833e-01],\n", " [-2.01193802e+00, -4.86377256e-03, -1.69970952e-01, ...,\n", " -7.91160711e-02, -1.60395600e+00, -1.07807833e-01],\n", " [-1.96164971e+00, -5.00306683e-02, -1.10820832e-01, ...,\n", " -4.34669926e-02, -1.65086232e+00, -1.54262471e-01]]])
<xarray.Dataset>\n", "Dimensions: (chain: 40, draw: 1500)\n", "Coordinates:\n", " * chain (chain) int64 0 1 2 3 4 5 6 7 8 9 ... 30 31 32 33 34 35 36 37 38 39\n", " * draw (draw) int64 0 1 2 3 4 5 6 7 ... 1493 1494 1495 1496 1497 1498 1499\n", "Data variables:\n", " lp (chain, draw) float64 -16.3 -17.83 -18.92 ... -20.11 -20.11 -16.68\n", "Attributes:\n", " created_at: 2021-08-30T18:14:57.532516\n", " arviz_version: 0.11.2\n", " inference_library: emcee\n", " inference_library_version: 3.1.1
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\n", " 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,\n", " 36, 37, 38, 39])
array([ 0, 1, 2, ..., 1497, 1498, 1499])
array([[-16.29703737, -17.82792262, -18.92214387, ..., -13.44930902,\n", " -13.44930902, -13.44930902],\n", " [-23.84232789, -23.84232789, -21.27484126, ..., -13.70035183,\n", " -17.53674728, -14.41060779],\n", " [-23.52855761, -23.52855761, -22.5780883 , ..., -13.55239988,\n", " -13.55239988, -13.55239988],\n", " ...,\n", " [-25.50638851, -17.64822888, -15.83134714, ..., -14.60346133,\n", " -14.60346133, -14.60346133],\n", " [-25.11716475, -26.98472303, -21.36045048, ..., -17.52355592,\n", " -19.35557577, -19.35557577],\n", " [-20.86324354, -20.86324354, -20.86324354, ..., -20.1093519 ,\n", " -20.1093519 , -16.6765458 ]])
<xarray.Dataset>\n", "Dimensions: (arg_0_dim_0: 8, arg_1_dim_0: 8)\n", "Coordinates:\n", " * arg_0_dim_0 (arg_0_dim_0) int64 0 1 2 3 4 5 6 7\n", " * arg_1_dim_0 (arg_1_dim_0) int64 0 1 2 3 4 5 6 7\n", "Data variables:\n", " arg_0 (arg_0_dim_0) float64 28.0 8.0 -3.0 7.0 -1.0 1.0 18.0 12.0\n", " arg_1 (arg_1_dim_0) float64 15.0 10.0 16.0 11.0 9.0 11.0 10.0 18.0\n", "Attributes:\n", " created_at: 2021-08-30T18:14:57.533391\n", " arviz_version: 0.11.2\n", " inference_library: emcee\n", " inference_library_version: 3.1.1
array([0, 1, 2, 3, 4, 5, 6, 7])
array([0, 1, 2, 3, 4, 5, 6, 7])
array([28., 8., -3., 7., -1., 1., 18., 12.])
array([15., 10., 16., 11., 9., 11., 10., 18.])
<xarray.Dataset>\n", "Dimensions: (chain: 40, draw: 1500, school: 8)\n", "Coordinates:\n", " * chain (chain) int64 0 1 2 3 4 5 6 7 8 9 ... 30 31 32 33 34 35 36 37 38 39\n", " * draw (draw) int64 0 1 2 3 4 5 6 7 ... 1493 1494 1495 1496 1497 1498 1499\n", " * school (school) int64 0 1 2 3 4 5 6 7\n", "Data variables:\n", " mu (chain, draw) float64 0.6982 0.7962 0.8433 ... 5.763 5.763 5.029\n", " tau (chain, draw) float64 0.6679 0.7259 0.8075 ... 2.051 2.051 3.239\n", " eta (chain, draw, school) float64 0.08153 -0.5837 ... 0.0377 -0.03057\n", "Attributes:\n", " created_at: 2021-08-30T18:15:01.274909\n", " arviz_version: 0.11.2\n", " inference_library: emcee\n", " inference_library_version: 3.1.1
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\n", " 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,\n", " 36, 37, 38, 39])
array([ 0, 1, 2, ..., 1497, 1498, 1499])
array([0, 1, 2, 3, 4, 5, 6, 7])
array([[ 0.69824844, 0.79617544, 0.84330726, ..., 5.36725902,\n", " 5.36725902, 5.36725902],\n", " [ 0.11248859, 0.11248859, 0.06015108, ..., 6.26414247,\n", " 7.48213444, 7.62666694],\n", " [-0.93632231, -0.93632231, -0.88874485, ..., 2.07279112,\n", " 2.07279112, 2.07279112],\n", " ...,\n", " [-1.39513971, -0.6841303 , -0.22676674, ..., 8.03948904,\n", " 8.03948904, 8.03948904],\n", " [-0.64258473, -0.63895969, -0.27810694, ..., 1.28046414,\n", " -0.03145993, -0.03145993],\n", " [-1.51237728, -1.51237728, -1.51237728, ..., 5.76290275,\n", " 5.76290275, 5.02928256]])
array([[ 0.66788403, 0.7259102 , 0.80752206, ..., 0.03694788,\n", " 0.03694788, 0.03694788],\n", " [ 0.3207948 , 0.3207948 , 0.41749554, ..., 9.79903119,\n", " 8.14156878, 7.60103129],\n", " [ 1.04038851, 1.04038851, 1.06008197, ..., 17.27429606,\n", " 17.27429606, 17.27429606],\n", " ...,\n", " [ 1.33245704, 1.06653867, 1.02533509, ..., 0.22325512,\n", " 0.22325512, 0.22325512],\n", " [ 0.53704382, 0.49084296, 0.82428818, ..., 0.97799322,\n", " 0.71121769, 0.71121769],\n", " [ 1.03024648, 1.03024648, 1.03024648, ..., 2.05085976,\n", " 2.05085976, 3.23924793]])
array([[[ 0.08152575, -0.58367651, 0.10398099, ..., 0.04490954,\n", " 0.29826293, -0.58949077],\n", " [ 0.00851919, -0.63579839, -0.00342714, ..., 0.2302036 ,\n", " 0.13570644, -0.51653613],\n", " [ 0.00771088, -0.82795929, 0.08644913, ..., 0.17352078,\n", " 0.1384578 , -0.60913273],\n", " ...,\n", " [ 0.01908609, -0.33392221, 0.3755985 , ..., 0.30174842,\n", " 0.76155516, -0.28262954],\n", " [ 0.01908609, -0.33392221, 0.3755985 , ..., 0.30174842,\n", " 0.76155516, -0.28262954],\n", " [ 0.01908609, -0.33392221, 0.3755985 , ..., 0.30174842,\n", " 0.76155516, -0.28262954]],\n", "\n", " [[ 0.51822161, -0.27190443, 0.7464532 , ..., -1.06344488,\n", " 1.27061036, -1.02587602],\n", " [ 0.51822161, -0.27190443, 0.7464532 , ..., -1.06344488,\n", " 1.27061036, -1.02587602],\n", " [ 0.52702754, -0.82228464, 0.37312608, ..., -1.06039012,\n", " 0.71765789, -1.18220311],\n", "...\n", " [-0.63261196, -0.32320034, 1.33819298, ..., -0.22083327,\n", " -0.15337504, -0.8976637 ],\n", " [-0.78396615, -0.38804561, 1.50462748, ..., -0.23227815,\n", " -0.04459114, -0.91648287],\n", " [-0.78396615, -0.38804561, 1.50462748, ..., -0.23227815,\n", " -0.04459114, -0.91648287]],\n", "\n", " [[-0.40230539, -0.34432128, -0.9050526 , ..., 0.00442761,\n", " -0.1805794 , 1.80343844],\n", " [-0.40230539, -0.34432128, -0.9050526 , ..., 0.00442761,\n", " -0.1805794 , 1.80343844],\n", " [-0.40230539, -0.34432128, -0.9050526 , ..., 0.00442761,\n", " -0.1805794 , 1.80343844],\n", " ...,\n", " [ 0.46842652, 1.43086564, -1.05638496, ..., -0.81374118,\n", " -0.20851802, 0.15942518],\n", " [ 0.46842652, 1.43086564, -1.05638496, ..., -0.81374118,\n", " -0.20851802, 0.15942518],\n", " [ 0.60565958, 1.60761732, -0.83442841, ..., -0.53590256,\n", " 0.0377028 , -0.03056562]]])
<xarray.Dataset>\n", "Dimensions: (chain: 40, draw: 1500, school: 8)\n", "Coordinates:\n", " * chain (chain) int64 0 1 2 3 4 5 6 7 8 9 ... 30 31 32 33 34 35 36 37 38 39\n", " * draw (draw) int64 0 1 2 3 4 5 6 7 ... 1493 1494 1495 1496 1497 1498 1499\n", " * school (school) int64 0 1 2 3 4 5 6 7\n", "Data variables:\n", " y (chain, draw, school) float64 2.55 -6.472 -27.52 ... -0.198 23.99\n", "Attributes:\n", " created_at: 2021-08-30T18:15:01.270461\n", " arviz_version: 0.11.2\n", " inference_library: emcee\n", " inference_library_version: 3.1.1
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\n", " 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,\n", " 36, 37, 38, 39])
array([ 0, 1, 2, ..., 1497, 1498, 1499])
array([0, 1, 2, 3, 4, 5, 6, 7])
array([[[ 2.55033076, -6.47211535, -27.51745706, ..., 6.91654057,\n", " 1.43708434, 34.38440582],\n", " [ 10.56568241, -13.09651652, -0.97103654, ..., 8.26658892,\n", " -1.98414079, -1.63886384],\n", " [-10.82120742, -8.81999555, 4.70804147, ..., 15.28034757,\n", " 6.92289175, -15.92737786],\n", " ...,\n", " [ 11.94492479, 10.80561966, -20.08957419, ..., 12.83706645,\n", " 7.30085292, 11.12453816],\n", " [ 11.94492479, 10.80561966, -20.08957419, ..., 12.83706645,\n", " 7.30085292, 11.12453816],\n", " [ 11.94492479, 10.80561966, -20.08957419, ..., 12.83706645,\n", " 7.30085292, 11.12453816]],\n", "\n", " [[ 16.21807858, -19.11367164, -25.25396006, ..., -1.51342814,\n", " -14.31565159, -21.57067662],\n", " [ 16.21807858, -19.11367164, -25.25396006, ..., -1.51342814,\n", " -14.31565159, -21.57067662],\n", " [ 5.99596366, -3.37233749, 14.76088223, ..., 3.03048959,\n", " -7.99827993, -27.87050399],\n", "...\n", " [ 25.0713929 , 0.77571313, -16.857685 , ..., -7.6442145 ,\n", " -6.94906266, -11.53403959],\n", " [-11.57514461, -14.76384044, 20.59296446, ..., -8.05191719,\n", " 5.25269844, -21.68638323],\n", " [-11.57514461, -14.76384044, 20.59296446, ..., -8.05191719,\n", " 5.25269844, -21.68638323]],\n", "\n", " [[-16.08108296, -5.25404432, -8.11886536, ..., 12.99207495,\n", " 5.32679948, 17.36514081],\n", " [-16.08108296, -5.25404432, -8.11886536, ..., 12.99207495,\n", " 5.32679948, 17.36514081],\n", " [-16.08108296, -5.25404432, -8.11886536, ..., 12.99207495,\n", " 5.32679948, 17.36514081],\n", " ...,\n", " [ 16.5054522 , -2.42689047, 15.45936197, ..., 15.14612022,\n", " 25.58293034, -8.32778174],\n", " [ 16.5054522 , -2.42689047, 15.45936197, ..., 15.14612022,\n", " 25.58293034, -8.32778174],\n", " [ 8.66840951, 1.67157617, -6.29182259, ..., -5.42734439,\n", " -0.19801562, 23.99112792]]])
<xarray.Dataset>\n", "Dimensions: (chain: 40, draw: 1500, school: 8)\n", "Coordinates:\n", " * chain (chain) int64 0 1 2 3 4 5 6 7 8 ... 32 33 34 35 36 37 38 39\n", " * draw (draw) int64 0 1 2 3 4 5 6 ... 1494 1495 1496 1497 1498 1499\n", " * school (school) int64 0 1 2 3 4 5 6 7\n", "Data variables:\n", " log_likelihood (chain, draw, school) float64 -3.3 -0.5916 ... -0.1543\n", "Attributes:\n", " created_at: 2021-08-30T18:15:01.271500\n", " arviz_version: 0.11.2\n", " inference_library: emcee\n", " inference_library_version: 3.1.1
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\n", " 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,\n", " 36, 37, 38, 39])
array([ 0, 1, 2, ..., 1497, 1498, 1499])
array([0, 1, 2, 3, 4, 5, 6, 7])
array([[[-3.29962425e+00, -5.91603994e-01, -5.54512921e-02, ...,\n", " -6.10346874e-04, -2.92497097e+00, -4.22172393e-01],\n", " [-3.28760730e+00, -5.87576994e-01, -5.62190075e-02, ...,\n", " -1.11418891e-05, -2.92591763e+00, -4.13790819e-01],\n", " [-3.27621247e+00, -6.12351344e-01, -5.98143882e-02, ...,\n", " -2.26937336e-06, -2.90528105e+00, -4.18794556e-01],\n", " ...,\n", " [-2.27648464e+00, -6.99644132e-02, -2.74388479e-01, ...,\n", " -1.58433525e-01, -1.58876020e+00, -1.36209530e-01],\n", " [-2.27648464e+00, -6.99644132e-02, -2.74388479e-01, ...,\n", " -1.58433525e-01, -1.58876020e+00, -1.36209530e-01],\n", " [-2.27648464e+00, -6.99644132e-02, -2.74388479e-01, ...,\n", " -1.58433525e-01, -1.58876020e+00, -1.36209530e-01]],\n", "\n", " [[-3.41541659e+00, -6.35964292e-01, -4.38888593e-02, ...,\n", " -1.24760573e-02, -3.05547121e+00, -4.60634226e-01],\n", " [-3.41541659e+00, -6.35964292e-01, -4.38888593e-02, ...,\n", " -1.24760573e-02, -3.05547121e+00, -4.60634226e-01],\n", " [-3.41505897e+00, -6.86105588e-01, -4.03992301e-02, ...,\n", " -1.57972233e-02, -3.11177713e+00, -4.77128919e-01],\n", "...\n", " [-3.32168269e+00, -4.94999995e-01, -1.22028296e-01, ...,\n", " -3.43723125e-05, -2.84581232e+00, -4.15125703e-01],\n", " [-3.63258963e+00, -6.90136396e-01, -6.37138926e-02, ...,\n", " -1.18346757e-02, -3.26278253e+00, -4.96498642e-01],\n", " [-3.63258963e+00, -6.90136396e-01, -6.37138926e-02, ...,\n", " -1.18346757e-02, -3.26278253e+00, -4.96498642e-01]],\n", "\n", " [[-3.98051738e+00, -9.73599203e-01, -1.20407032e-03, ...,\n", " -5.19763621e-02, -3.88027694e+00, -4.19212449e-01],\n", " [-3.98051738e+00, -9.73599203e-01, -1.20407032e-03, ...,\n", " -5.19763621e-02, -3.88027694e+00, -4.19212449e-01],\n", " [-3.98051738e+00, -9.73599203e-01, -1.20407032e-03, ...,\n", " -5.19763621e-02, -3.88027694e+00, -4.19212449e-01],\n", " ...,\n", " [-2.01193802e+00, -4.86377256e-03, -1.69970952e-01, ...,\n", " -7.91160711e-02, -1.60395600e+00, -1.07807833e-01],\n", " [-2.01193802e+00, -4.86377256e-03, -1.69970952e-01, ...,\n", " -7.91160711e-02, -1.60395600e+00, -1.07807833e-01],\n", " [-1.96164971e+00, -5.00306683e-02, -1.10820832e-01, ...,\n", " -4.34669926e-02, -1.65086232e+00, -1.54262471e-01]]])
<xarray.Dataset>\n", "Dimensions: (chain: 40, draw: 1500)\n", "Coordinates:\n", " * chain (chain) int64 0 1 2 3 4 5 6 7 8 9 ... 30 31 32 33 34 35 36 37 38 39\n", " * draw (draw) int64 0 1 2 3 4 5 6 7 ... 1493 1494 1495 1496 1497 1498 1499\n", "Data variables:\n", " lp (chain, draw) float64 -16.3 -17.83 -18.92 ... -20.11 -20.11 -16.68\n", "Attributes:\n", " created_at: 2021-08-30T18:15:01.272272\n", " arviz_version: 0.11.2\n", " inference_library: emcee\n", " inference_library_version: 3.1.1
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\n", " 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,\n", " 36, 37, 38, 39])
array([ 0, 1, 2, ..., 1497, 1498, 1499])
array([[-16.29703737, -17.82792262, -18.92214387, ..., -13.44930902,\n", " -13.44930902, -13.44930902],\n", " [-23.84232789, -23.84232789, -21.27484126, ..., -13.70035183,\n", " -17.53674728, -14.41060779],\n", " [-23.52855761, -23.52855761, -22.5780883 , ..., -13.55239988,\n", " -13.55239988, -13.55239988],\n", " ...,\n", " [-25.50638851, -17.64822888, -15.83134714, ..., -14.60346133,\n", " -14.60346133, -14.60346133],\n", " [-25.11716475, -26.98472303, -21.36045048, ..., -17.52355592,\n", " -19.35557577, -19.35557577],\n", " [-20.86324354, -20.86324354, -20.86324354, ..., -20.1093519 ,\n", " -20.1093519 , -16.6765458 ]])
<xarray.Dataset>\n", "Dimensions: (school: 8)\n", "Coordinates:\n", " * school (school) int64 0 1 2 3 4 5 6 7\n", "Data variables:\n", " y (school) float64 28.0 8.0 -3.0 7.0 -1.0 1.0 18.0 12.0\n", "Attributes:\n", " created_at: 2021-08-30T18:15:01.273600\n", " arviz_version: 0.11.2\n", " inference_library: emcee\n", " inference_library_version: 3.1.1
array([0, 1, 2, 3, 4, 5, 6, 7])
array([28., 8., -3., 7., -1., 1., 18., 12.])
<xarray.Dataset>\n", "Dimensions: (sigma_dim_0: 8)\n", "Coordinates:\n", " * sigma_dim_0 (sigma_dim_0) int64 0 1 2 3 4 5 6 7\n", "Data variables:\n", " sigma (sigma_dim_0) float64 15.0 10.0 16.0 11.0 9.0 11.0 10.0 18.0\n", "Attributes:\n", " created_at: 2021-08-30T18:15:01.273208\n", " arviz_version: 0.11.2\n", " inference_library: emcee\n", " inference_library_version: 3.1.1
array([0, 1, 2, 3, 4, 5, 6, 7])
array([15., 10., 16., 11., 9., 11., 10., 18.])